class: center, middle, inverse, title-slide # Willkommen ### Explorative Datenanalyse mit R
The R Bootcamp
### Februar 2020 --- layout: true <div class="my-footer"> <span style="text-align:center"> <span> <img src="https://raw.githubusercontent.com/therbootcamp/therbootcamp.github.io/master/_sessions/_image/by-sa.png" height=14 style="vertical-align: middle"/> </span> <a href="https://therbootcamp.github.io/"> <span style="padding-left:82px"> <font color="#7E7E7E"> www.therbootcamp.com </font> </span> </a> <a href="https://therbootcamp.github.io/"> <font color="#7E7E7E"> Explorative Datenanalyse mit R | Februar 2020 </font> </a> </span> </div> --- .pull-left45[ <br><br><br><br><br> # Agenda und Materialien Klicke auf <high>"....running..."</high> auf unserer Website! <font style="font-size:28px"><a href="www.therbootcamp.com"><b>www.therbootcamp.com</b></a></font> ] .pull-right5[ <br><br> <iframe src="https://therbootcamp.github.io/EDA_2020Feb/" width="500" height="500"></iframe> ] --- .pull-left6[ <br><br><br><br><br> # Ziel >###Das Ziel dieses Kurses ist Euch den kompetenten Umgang mit R für die Aufbereitung, Exploration, und Visualisierung von Daten zu vermitteln. ] .pull-right4[ <br><br><br><br> <p align="center"><img src="https://raw.githubusercontent.com/therbootcamp/therbootcamp.github.io/master/_sessions/_image/target.png" height="350"></p> ] --- .pull-left3[ # Der Data Science Kreislauf ] .pull-right7[ <br> <p align = "center"> <img src="http://sudeep.co/images/post_images/2018-02-09-Understanding-the-Data-Science-Lifecycle/chart.png" height="540"><br> <font style="font-size:10px">from <a href="http://sudeep.co/">http://sudeep.co/</a></font> </p> ] --- # Data Science Rollen <br><br> <p align = "center"> <img src="image/data_science_jobs.png"><br> <font style="font-size:10px">from <a href="https://news.efinancialcareers.com/sg-en/3001517/data-science-careers-finance">efinancialcareers.com</a></font> </p> --- # Data Science’s missverstandener Held .pull-left45[ <i>"Each of the three data science disciplines has its own excellence. Statisticians bring rigor, ML engineers bring performance, and analysts bring speed."</i> <i>"Your analyst is the sprinter; their ability to quickly help you see and summarize what-is-here is a superpower for your process."</i> <i>"The only roles every business needs are decision-makers and analysts. If you lose your analysts, who will help you figure out which problems are worth solving?"</i> <a href="https://hbr.org/2018/12/what-great-data-analysts-do-and-why-every-organization-needs-them">Harvard Business Review</a><br><a href="https://towardsdatascience.com/secret-paragraphs-from-hbrs-analytics-ddd2ead761d4">Towards Data Science</a> <br> <b>Cassie Kozyrkov</b><br> Chief Decision Scientist at Google ] .pull-right45[ <p align = "center"> <img src="image/cassie.png"><br> <font style="font-size:10px">from <a href="https://medium.com/@kozyrkov"medium.com</a></font> </p> ] --- # Features in Maschinellem Lernen .pull-left4[ <p align = "center"> <img src="image/ml_robot.jpg"><br> <font style="font-size:10px">from <a href="https://medium.com/@dkwok94/machine-learning-for-my-grandma-ca242e97ef62">medium.com</a></font> </p> ] .pull-right5[ <i>"…some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used."</i> <b>Pedro Domingos</b>, Professor for Computer Science, Uni Washington <br> <i>"The algorithms we used are very standard for Kagglers. […] We spent most of our efforts in feature engineering."</i> <b>Xavier Conort</b>, Chief Data Scientist, Data Robot <br> <i>"Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering."</i> <b>Andrew Ng</b>, Founder and CEO of Landing AI ] --- .pull-left4[ <br> # Agenda <ul> <li class="m1"><span><high>Workshop</high></span></li> <br><br> <ul class="level"> <li><span>1 Block zu Data IO</span></li> <li><span>2 Blöcke zu Wrangling</span></li> <li><span>3 Blöcke zu Plotting</span></li> </ul> <li class="m2"><span><high>Block</high> <br><br> <ul class="level"> <li><span>Folien-basierten Einführung</span></li> <li><span>Viele Übungen</span></li> <li><span>Interaktiven Zusammenfassung</span></li> </ul> </span></li> </ul> ] .pull-right45[ <br><br> <img src="image/schedule.png" height="525" align="center"> ] --- # Einführung .pull-left45[ <br2> <ul> <li class="m1"><span><high>Einführung</high> <br><br> <ul class="level"> <li><span>30-45 min</span></li> <li><span>Konzepte & Code Beispiele</span></li> </ul> </span></li> <li class="m2"><span><high>Materialien</high> <br><br> <ul class="level"> <li><span>Immer <a href="https://therbootcamp.github.io/EDA_2020Feb/">online verfügbar</a></span></li> </ul> </span></li> </ul> ] .pull-right55[ <p align="center"> <img src="image/present.jpg" style="width:350px"> <br> <font style="font-size:10px">from <a href="www.Freepik.com">Freepik.com</a></font> </p> ] --- .pull-left45[ # Übungen <ul> <li class="m1"><span><high>Selber Programmieren</high> <br><br> <ul class="level"> <li><span>20 - 50 Aufgaben</span></li> <li><span>Zu Beginn einfach dann zunehmend schwieriger.</span></li> <li><span>Folgt Eurem eigenen Tempo.</span></li> <li><span>Antworten kommen später.</span></li> </ul> </span></li> </ul> ] .pull-right5[ <br> <iframe src="https://therbootcamp.github.io/EDA_2020Feb/_sessions/Data/Data_practical.html" height="480px" width = "500px"></iframe> Beispiel:<a href="https://therbootcamp.github.io/EDA_2020Feb/_sessions/Data/Data_practical.html"> Daten </a> ] --- # Cheatsheets <table width="100%" style="cellspacing:0; cellpadding:0; border:none"> <tr> <td> <p align = 'center'>RStudio<br><br> <a href="image/rstudio-ide.pdf"><img border="0" alt="W3Schools" src="image/rstudio.png" height="180"></a></p> </td> <td> <p align = 'center'>Base R<br><br> <a href="image/base-r.pdf"><img border="0" alt="W3Schools" src="image/baser.png" height="180"></a></p> </td> <td> <p align = 'center'>Data Import<br><br> <a href="image/data-import.pdf" download><img border="0" alt="W3Schools" src="image/import.png" height="180"></a></p> </td> <td> <p align = 'center'>Data Wrangling<br><br> <a href="image/data-transformation.pdf"><img border="0" alt="W3Schools" src="image/wrangling.png" height="180"></a></p> </td> <td> <p align = 'center'>Data Visualization<br><br> <a href="image/data-visualization-2.1.pdf"><img border="0" alt="W3Schools" src="image/plotting.png" height="180" ></a></p> </td> </tr> </table> <br> --- .pull-left4[ <br><br> # Pausen <ul> <li class="m1"><span>Mach <high>jederzeit</high> Pausen.</span></li> <li class="m2"><span>Bedient euch an der <high>Pausenverpflegung</high>.</span></li> <li class="m3"><span>Lunch alleine oder begleitet uns zum <high>Tibits</high>.</span></li> </ul> ] .pull-right6[ <p align='center'><br><br><br><br> <img src="https://raw.githubusercontent.com/therbootcamp/therbootcamp.github.io/master/_sessions/_image/tibits.jpg" height="400" vspace="10"><br> <font style="font-size:10px">from <a href="https://www.tibits.ch/de/restaurants.html#tibits-basel">Tibits.ch</a></font> </p> ] --- # Photos <p align="center"> <img src="image/camera.png" height="400px"> </p> --- # Vorstellung .pull-left5[ <ul> <li class="m1"><span>Wie heisst Du?</span></li> <li class="m2"><span>Was ist dein Beruf?</span></li> <li class="m3"><span>Hast du Programmiererfahrung mit R oder anderen Programmiersprachen?</span></li> <li class="m4"><span>Wieso möchtest Du R lernen?</span></li> <li class="m5"><span>Kaffee oder Tee?</span></li> <li class="m6"><span>Bier oder Wein?</span></li> <li class="m7"><span>Berlin oder Paris?</span></li> </ul> ] .pull-right45[ <p align="center"> <img src="image/vorstellung.jpg" height="360px"> <br> <font style="font-size:10px">from <a href="www.artofmanliness.com">artofmanliness.com</a></font> </p> ] --- class: middle, center <h1><a href=https://therbootcamp.github.io/EDA_2020Feb/index.html>Agenda</a></h1>