In this practical you’ll practice plotting data with the amazing ggplot2 package.
library(tidyverse)
library(plotly)
library(ggthemes)
mcdonalds <- read_csv("https://raw.githubusercontent.com/therbootcamp/BaselRBootcamp_2018July/master/_sessions/_data/baselrbootcamp_data/mcdonalds.csv")
kc_house <- read_csv("https://raw.githubusercontent.com/therbootcamp/BaselRBootcamp_2018July/master/_sessions/_data/baselrbootcamp_data/kc_house.csv")
| File | Rows | Columns |
|---|---|---|
| mcdonalds.csv | 260 | 24 |
| Package | Installation |
|---|---|
tidyverse |
install.packages("tidyverse") |
ggthemes |
install.packages("ggthemes") |
plotly |
install.packages("plotly") |
The following examples will take you through the steps of creating both simple and complex plots with ggplot2. Try to go through each line of code and see how it works!
# -----------------------------------------------
# Examples of using ggplot2 on the mpg data
# ------------------------------------------------
library(tidyverse) # Load tidyverse (which contains ggplot2!)
mpg # Look at the mpg data
# Just a blank space without any aesthetic mappings
ggplot(data = mpg)
# Now add a mapping where engine displacement (displ) and highway miles per gallon (hwy) are
# mapped to the x and y aesthetics
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy)) # Map displ to x-axis and hwy to y-axis
# Add points with geom_point()
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy)) +
geom_point()
# Add points with geom_count()
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy)) +
geom_count()
# Again, but with some additional arguments
# Also using a new theme temporarily
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy)) +
geom_point(col = "red", # Red points
size = 3, # Larger size
alpha = .5, # Transparent points
position = "jitter") + # Jitter the points
scale_x_continuous(limits = c(1, 15)) + # Axis limits
scale_y_continuous(limits = c(0, 50)) +
theme_minimal()
# Assign class to the color aesthetic and add labels with labs()
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy, col = class)) + # Change color based on class column
geom_point(size = 3, position = 'jitter') +
labs(x = "Engine Displacement in Liters",
y = "Highway miles per gallon",
title = "MPG data",
subtitle = "Cars with higher engine displacement tend to have lower highway mpg",
caption = "Source: mpg data in ggplot2")
# Add a regression line for each class
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy, color = class)) +
geom_point(size = 3, alpha = .9) +
geom_smooth(method = "lm")
# Add a regression line for all classes
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy, color = class)) +
geom_point(size = 3, alpha = .9) +
geom_smooth(col = "blue", method = "lm")
# Facet by class
ggplot(data = mpg,
mapping = aes(x = displ,
y = hwy,
color = factor(cyl))) +
geom_point() +
facet_wrap(~ class)
# Another fancier example
ggplot(data = mpg,
mapping = aes(x = cty, y = hwy)) +
geom_count(aes(color = manufacturer)) + # Add count geom (see ?geom_count)
geom_smooth() + # smoothed line without confidence interval
geom_text(data = filter(mpg, cty > 25),
aes(x = cty,y = hwy,
label = rownames(filter(mpg, cty > 25))),
position = position_nudge(y = -1),
check_overlap = TRUE,
size = 5) +
labs(x = "City miles per gallon",
y = "Highway miles per gallon",
title = "City and Highway miles per gallon",
subtitle = "Numbers indicate cars with highway mpg > 25",
caption = "Source: mpg data in ggplot2",
color = "Manufacturer",
size = "Counts")
The main ggplot2 webpage at http://ggplot2.tidyverse.org/ has great tutorials and examples.
Check out Selva Prabhakaran’s website for a nice gallery of ggplot2 graphics http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html
ggplot2 is also great for making maps. For examples, check out Eric Anderson’s page at http://eriqande.github.io/rep-res-web/lectures/making-maps-with-R.html
baselrbootcamp R project. It should already have the folders 1_Data and 2_Code. Make sure that the data files listed in the Datasets section above are in your 1_Data folder.# Done!
Open a new R script. At the top of the script, using comments, write your name and the date. Save it as a new file called plotting_practical.R in the 2_Code folder.
Using library() load the set of packages for this practical listed in the packages section above.
## NAME
## DATE
## Plotting Practical
library(XX)
library(XX)
#...
library(tidyverse)
mcondalds.csv data set, which contains nutrition information about items from McDonalds. Using read_csv(), load the data into R and store it as a new object called mcdonalds.mcdonalds <- read_csv("1_Data/mcdonalds.csv")
mcdonalds
# A tibble: 260 x 24
Category Item `Serving Size` Calories `Calories from … `Total Fat`
<chr> <chr> <chr> <int> <int> <dbl>
1 Breakfa… Egg … 4.8 oz (136 g) 300 120 13
2 Breakfa… Egg … 4.8 oz (135 g) 250 70 8
3 Breakfa… Saus… 3.9 oz (111 g) 370 200 23
4 Breakfa… Saus… 5.7 oz (161 g) 450 250 28
5 Breakfa… Saus… 5.7 oz (161 g) 400 210 23
6 Breakfa… Stea… 6.5 oz (185 g) 430 210 23
7 Breakfa… Baco… 5.3 oz (150 g) 460 230 26
8 Breakfa… Baco… 5.8 oz (164 g) 520 270 30
9 Breakfa… Baco… 5.4 oz (153 g) 410 180 20
10 Breakfa… Baco… 5.9 oz (167 g) 470 220 25
# ... with 250 more rows, and 18 more variables: `Total Fat (% Daily
# Value)` <int>, `Saturated Fat` <dbl>, `Saturated Fat (% Daily
# Value)` <int>, `Trans Fat` <dbl>, Cholesterol <int>, `Cholesterol (%
# Daily Value)` <int>, Sodium <int>, `Sodium (% Daily Value)` <int>,
# Carbohydrates <int>, `Carbohydrates (% Daily Value)` <int>, `Dietary
# Fiber` <int>, `Dietary Fiber (% Daily Value)` <int>, Sugars <int>,
# Protein <int>, `Vitamin A (% Daily Value)` <int>, `Vitamin C (% Daily
# Value)` <int>, `Calcium (% Daily Value)` <int>, `Iron (% Daily
# Value)` <int>
mcdonalds data frame has many column names with spaces and ‘bad’ characters like parentheses. Run the following code to fix that!# Clean up the names of mcdonalds
mcdonalds <- mcdonalds %>%
select(-contains("% Daily Value")) %>% # Remove all '% Daily Value' columns
rename_all(.funs = ~ gsub(" ", "", .)) # no more spaces!
mcdonalds
# A tibble: 260 x 14
Category Item ServingSize Calories CaloriesfromFat TotalFat
<chr> <chr> <chr> <int> <int> <dbl>
1 Breakfa… Egg … 4.8 oz (13… 300 120 13
2 Breakfa… Egg … 4.8 oz (13… 250 70 8
3 Breakfa… Saus… 3.9 oz (11… 370 200 23
4 Breakfa… Saus… 5.7 oz (16… 450 250 28
5 Breakfa… Saus… 5.7 oz (16… 400 210 23
6 Breakfa… Stea… 6.5 oz (18… 430 210 23
7 Breakfa… Baco… 5.3 oz (15… 460 230 26
8 Breakfa… Baco… 5.8 oz (16… 520 270 30
9 Breakfa… Baco… 5.4 oz (15… 410 180 20
10 Breakfa… Baco… 5.9 oz (16… 470 220 25
# ... with 250 more rows, and 8 more variables: SaturatedFat <dbl>,
# TransFat <dbl>, Cholesterol <int>, Sodium <int>, Carbohydrates <int>,
# DietaryFiber <int>, Sugars <int>, Protein <int>
In this section, you’ll build the following plot step by step.
ggplot(), create the following blank plot using the data and mapping arguments (but no geom). Use calories for the x aesthetic and SaturatedFat for the y aestheticggplot(data = mcdonalds,
mapping = aes(x = XX, y = XX))
ggplot(mcdonalds, aes(x = Calories, y = SaturatedFat))
geom_point(), add points to the plotggplot(data = mcdonalds,
mapping = aes(x = XX, y = XX)) +
geom_point()
ggplot(mcdonalds, aes(x = Calories, y = SaturatedFat)) +
geom_point()
color aesthetic mapping, color the points by their Category.ggplot(mcdonalds, aes(x = XX, y = XX, col = XX)) +
geom_point()
ggplot(mcdonalds, aes(x = Calories, y = SaturatedFat, col = Category)) +
geom_point()
geom_smooth().ggplot(mcdonalds, aes(x = XX, y = XX, col = XX)) +
geom_point() +
geom_smooth()
ggplot(mcdonalds, aes(x = Calories, y = SaturatedFat, col = Category)) +
geom_point() +
geom_smooth()
"black". When you do, you should then only see one line.ggplot(mcdonalds, aes(x = XX, y = XX, col = XX)) +
geom_point() +
geom_smooth(col = "XX")
ggplot(mcdonalds, aes(x = Calories, y = SaturatedFat, col = Category)) +
geom_point() +
geom_smooth(col = "black")
labs() function.ggplot(mcdonalds, aes(x = XX, y = XX, col = XX)) +
geom_point() +
geom_smooth(col = "XX") +
labs(title = "XX",
subtitle = "XX",
caption = "XX")
ggplot(mcdonalds, aes(x = Calories, y = SaturatedFat, col = Category)) +
geom_point() +
geom_smooth(col = "black") +
labs(title = "McDonalds Nutrition",
subtitle = "Each point is a menu item",
caption = "Source: Kaggle.com")
0 and 1250 using xlim().ggplot(mcdonalds, aes(x = XX, y = XX, col = XX)) +
geom_point() +
geom_smooth(col = "XX") +
labs(title = "XX",
subtitle = "XX",
caption = "XX") +
xlim(XX, XX)
ggplot(mcdonalds, aes(x = Calories, y = SaturatedFat, col = Category)) +
geom_point() +
geom_smooth(col = "black") +
labs(title = "McDonalds Nutrition",
subtitle = "Each point is a menu item",
caption = "Source: Kaggle.com") +
xlim(0, 1250)
theme_minimal(). You should now have the final plot!ggplot(mcdonalds, aes(x = XX, y = XX, col = XX)) +
geom_point() +
geom_smooth(col = "XX") +
labs(title = "XX",
subtitle = "XX",
caption = "XX")+
xlim(XX, XX) +
theme_minimal()
ggplot(mcdonalds, aes(x = Calories, y = SaturatedFat, col = Category)) +
geom_point() +
geom_smooth(col = "black") +
labs(title = "McDonalds Nutrition",
subtitle = "Each point is a menu item",
caption = "Source: Kaggle.com") +
xlim(0, 1250) +
theme_minimal()
ggplot(data = mcdonalds, aes(x = XX, y = XX, fill = XX)) +
geom_violin() +
guides(fill = FALSE) +
labs(title = "XX",
subtitle = "XX")
+ stat_summary(fun.y = "mean", geom = "point", col = "white", size = 4) to include points showing the mean of each distributionggplot(data = mcdonalds, aes(x = Category, y = Calories, fill = Category)) +
geom_violin() +
guides(fill = FALSE) +
stat_summary(fun.y = "mean", geom = "point", col = "white", size = 4) +
labs(title = "McDonalds",
subtitle = "Calorie distribution by menu category")
+ geom_jitter(width = .1, alpha = .5) to your plot, what do you see?ggplot(data = mcdonalds, aes(x = Category, y = Calories, fill = Category)) +
geom_violin() +
geom_jitter(width = .1, alpha = .5) +
guides(fill = FALSE) +
stat_summary(fun.y = "mean", geom = "point", col = "white", size = 4) +
labs(title = "McDonalds",
subtitle = "Calorie distribution by menu category")
stat_summary() from "mean" to "median".stat_summary() to something much bigger (or smaller).width argument in geom_jitter() to width = 0.geom_violin(), try geom_boxplot().fill = Category aesthetic entirely.Sodium and Calories.ggplot(XX, aes(x = XX, y = XX)) +
geom_point(alpha = .2) +
facet_wrap(~ XX) +
labs(title = "XX",
subtitle = "XX") +
theme_minimal()
ggplot(mcdonalds, aes(x = Sodium, y = Calories)) +
geom_point(alpha = .2) +
facet_wrap(~Category) +
labs(title = "McDonales",
subtitle = "Sodium vs. Calories") +
theme_minimal()
Category.geom_smooth().Create a scatterplot showing the relationship between Cholesterol and Protein .
Color the points according to their Calories by specifying the col aesthetic.
Change the colors by including the additional argument + scale_colour_gradient(low = "blue", high = "red").
Use a gray color palette by using scale_color_grey() instead of scale_colour_gradient().
Customize! Look at all of the named colors in R by running colors(). Then, use two new colors in your plot.
ggplot(XX, aes(x = XX, y = X)) +
stat_summary(geom = "bar",
fun.y = "mean") +
labs(title = "XX",
subtitle = "XX")
ggplot(mcdonalds, aes(x = Category, y = Calories)) +
stat_summary(geom = "bar",
fun.y = "mean") +
labs(title = "Calories by McDonalds menu category",
subtitle = "Bars represent means")
"mean", show the "median".geom_point(), geom_count() or geom_jitter().mcdonalds_gg using mcdonalds_gg <- ggplot(...)mcdonalds_gg <- ggplot(...) + ... # Include your plotting code here
Evaluate your mcdonalds_gg object to see that it does indeed contain your plot.
Save your plot to a .pdf-file called mcdonalds.pdf using ggsave(). When you finish, find your plot in 3_Figures and open it to see how it looks!
# Save mcdonalds_gg to a pdf file
ggsave(filename = "3_Figures/mcdonalds",
device = "pdf",
plot = mcdonalds_gg,
width = 4,
height = 4,
units = "in")
Play around with the width and height arguments to change the dimensions of the plot.
Customize your code to create a jpeg image called mcdonalds.jpeg
Let’s create the following plot with additional point labels using geom_text():
ggplot(mcdonalds, aes(x = XX,
y = XX,
col = XX)) +
geom_point() +
xlim(XX, XX) +
ylim(XX, XX) +
theme_minimal() +
labs(title = "XX")
Try adding labels to the plot indicating which item each point represents by adding + geom_text().
Where are the labels? Ah, we didn’t tell ggplot which column in the data represents the item descriptions. Fix this by specifying the label aesthetic in your first call to the aes() function. That is, include label = Item underneath the line col = XX. Now you should see lots of labels!
Customize your geom_text() by including the arguments: geom_text(col = "black", check_overlap = TRUE, hjust = "left").
Using the data argument in geom_text(), specify that the labels should only apply to items over 1100 calories (hint: geom_text(data = mcdonalds %>% filter(XX > XX)))
Play around!
size aesthetic.Category to the color aesthetic, try creating different facets for each Category with facet_wrap(~ Category).theme_excel() included in the ggthemes package.plotly::ggplotly()ggplotly()-function from the plotly package, you can turn any ggplot object into an interactive plot like the one below! Run the following code to see it in action.# Create a standard ggplot object
MyPlot <- ggplot(data = mcdonalds,
aes(x = Calories, y = TotalFat, col = Category)) +
geom_point()
# Make it interactive with ggplotly()!
library(plotly)
ggplotly(MyPlot)
Play around with your plot! See what happens when you hover over the points with your mouse. You can even zoom in by dragging your mouse.
Try turning one of your favorite previous plots into an interactive plotly plot using the ggplotly() function!
For these challenges, use the kc_house dataset. Load the data as kc_house
scale_color_gradient(low = "green", high = "red"))log(price)