Prediction is very difficult, especially if it's about the future.
Nils Bohr, Nobelpreisträger in Physik
An economist is an expert who will know tomorrow why the things he predicted yesterday didn't happen today.
Evan Esar, Satiriker
from futurism.com
"Könnt ihr euch ein Modell vorstellen, das perfekten Fit im Training liefert und in der Vorhersage nutzlos ist?"
id | sex | age | fam_history | smoking | criterion |
---|---|---|---|---|---|
1 | f | 45 | No | TRUE | 0 |
2 | m | 43 | No | FALSE | 0 |
3 | f | 40 | Yes | FALSE | 1 |
4 | f | 51 | Yes | TRUE | 1 |
5 | m | 44 | Yes | FALSE | 0 |
id | sex | age | fam_history | smoking | criterion |
---|---|---|---|---|---|
91 | f | 51 | No | FALSE | ? |
92 | m | 47 | No | TRUE | ? |
93 | f | 39 | Yes | TRUE | ? |
94 | f | 51 | Yes | TRUE | ? |
95 | f | 50 | No | TRUE | ? |
Gini(S)=1−k∑jp2j
Ginigain=Gini(S)−Gini(A,S)
mit
Gini(A,S)=∑ninGini(Si)
Loss=Impurity+cp∗(nterminalnodes)
SSE=∑i∈S1(yi−ˉy1)2+∑i∈S2(yi−ˉy2)2
# Fitte einen decision treetrain(form = verzug ~ ., # factor data = Darlehen, method = "rpart", trControl = ctrl)# Fitte einen regression treetrain(form = einkommen ~ ., # kein factor data = basel, method = "rpart", trControl = ctrl)
Element | Beschreibung |
Resampling |
Kreiert neue Datensätze die in ihrer Komposition variieren. Dabei werden |
Averaging |
Das Kombinieren von Vorhersagen gleicht typischerweise |
# Fitte ein random foresttrain(form = verzug ~ ., # factor data = Darlehen, method = "rf", trControl = ctrl)# Fitte ein random foresttrain(form = einkommen ~ ., # kein factor data = basel, method = "rf", trControl = ctrl)
Argument | Beschreibung |
|
Das Kriterion. Wichtig für eine |
|
Der |
# Wichtig für konstante Ergebnisseset.seed(100)# Indizes für Trainingindex <- createDataPartition(y = basel$einkommen, p = .8, list = FALSE)# Kreiere Trainingsdatenbasel_train <- basel %>% slice(index)# Kreiere Testdatenbasel_test <- basel %>% slice(-index)
Argument | Beschreibung |
|
|
|
Testdaten (Muss alle Features in |
# Fitte das Modell zu dne Trainingsdatenmod <- train(form = einkommen ~ ., method = "glm", data = basel_train)# Extrahiere die gefitteten Wertemod_fit <- predict(mod)# Berechne echte Vorhersagen für Testdatenmod_pred <- predict(mod, newdata = basel_test)# Evaluiere das ErgebnispostResample(pred = mod_pred, obs = basel_test$einkommen)
Prediction is very difficult, especially if it's about the future.
Nils Bohr, Nobelpreisträger in Physik
An economist is an expert who will know tomorrow why the things he predicted yesterday didn't happen today.
Evan Esar, Satiriker
from futurism.com
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |